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ABSTRACT 
 

This paper discusses an attempted implementation of an evolutionary hardware system that can 
generate mathematically-optimal digital logic circuits based on predetermined evolution criteria. 
Hardware is implemented using custom evolutionary cells designed in VHDL and run on a Xilinx 
Artix-7 FPGA development board, with an integrated microprocessor for oversight. Evolutionary 
computations are performed on a PC connected to the FPGA board via a UART protocol. 
 

 
1. INTRODUCTION 

 
Field programmable gate arrays (FPGAs) provide an adaptable hardware solution that can be 
reprogrammed into a new circuit without requiring any physical hardware changes. This allows a 
designed to modify the functionality of a design, even after it has been produced. With hardware 
that can be changed, it is possible to perform iterative circuit design, improving the product with 
each consecutive generation and testing cycle. This is essentially how circuits are designed by 
humans – iterating and testing through a design and eliminating bugs at each step. When we add 
these FPGAs to the design process, one can imagine a scenario where if a circuit or can be 
mathematically described, it can be combined with concepts from computational biology and 
natural selection simulations to run simulations of many different circuits on the FPGA at a high 
rate, and computationally evolve the best possible circuit for the task given the available hardware. 
 
In his 1996 paper, “An Evolved Circuit, Intrinsic in Silicon, Entwined with Physics”, Dr. Adrian 
Thompson [1] did just that, implementing a frequency discriminator based on evolved analog 
feedback loops in an early Xilinx XC6200 FPGA. Since Dr. Thompson’s work, however, the field 
has plateaued. This is primarily due to changes in FPGA architecture to address security concerns 
and remove the ability to change the configuration of the chip on-the-fly. 
 
The initial scope of this project was to design and implement both the FPGA circuitry and the PC-
side software to program and test it. On the FPGA side, this entailed the following, each of which 
will be described in detail in subsequent sections: 

 
• Design of individual evolutionary “cells” 
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• Design of an overarching “logic block” integrating many cells into an evolvable 
environment 

• Integration of an embedded microprocessor to handle communication with the host PC and 
logic block 

• Design of a UART communication protocol for programming the logic block 
 

On the PC side, the requirements consisted of: 
 

• Implementation of the UART communication protocol for programming the evolutionary 
circuit 

• Evolutionary algorithm implementation that parses output from hardware testing and then 
generates the next individual for testing 

• Visualization software that displays the currently-programmed circuit for analysis 
 
A high-level overview of this system can be seen in Figure 1 below. 

Figure 1 -  High Level Architecture Diagram 
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The rest of this paper will focus on architecture decisions, information learned, and the minutiae 
of the segments implemented, along with the implementation plan for those that weren’t 
successfully completed. 
 
 

2. FPGA IMPLEMENTATION 
 

2.1 EHW CELL IMPLEMENTATION 
 
The real core of the project’s ability to be modified on the fly and evolve lies in the implementation 
of the evolutionary hardware cell. As noted in Section 1, one of the primary causes of the 
stagnation in this field has been the removal of the ability to reprogram most consumer FPGAs 
while they are running. To overcome this, we implement what amounts to an abstraction layer on 
the basic FPGA fabric, adding our own configurable logic gates that can be configured on the fly. 
Figure 2 below shows a block-diagram description of each EHW cell. 
Each cell implements bidirectional IO at each of the north, east, west, and south (NEWS) edges. 
Each NEWS output has an output multiplexer allowing the output to be the signal received at any 
other NEWS input, or the output of the cell’s logic function, x. The logic function of each cell has 
two inputs, both selectable between any of the NEWS inputs, and the output of the logic function 
can be selected as any a logical NAND, AND, OR, or NOT operation between the two inputs. 

 
All configurable functions inside a cell are controlled by the 16-bit cell configuration memory, 
which is implemented internally as 16 series D-flip flops forming a serial shift register, with 
parallel outputs of each bit running to the configuration inputs of all muxes and the logic function. 
At initialization, the configuration memory must be loaded serially via the programming interface 

Figure 2 - EHW Cell Block Diagram 
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on the PROG_* pins. This programming interface will be detailed in the following logic block 
detail section. 
 

 
Figure 3 - EHW Cell Logic Simulation 

If we examine the circuit simulation in Figure 3 above, we can prove the functionality of each cell. 
Each of the NEWS inputs is fed a simple square wave with a different period on each input. The 
*o_mux[1:0] bits configure each of the output muxes to output the signal 90 degrees counter 
clockwise from it – i.e. the WO output contains the signal present at SI, since south is 90 degrees 
counterclockwise to west. 
 
The func_sel*[1:0] bits select which signal is present at each logic function input a and b, in this 
case input a is NI, and input b is EI. The func_sel[1:0] bits then configure the logic function output 
to be a logical NAND of a and b. This a NAND b output is seen correctly on func_out. 
 
 

2.2 LOGIC BLOCK IMPLEMENTATION 
 
One layer up from the EHW cells lives the logic block (LB) implementation. The LB creates a 
16x16 grid of cells, connects all of their NEWS edges to one another, formalizes two 8-bit input 
values at the top left of the grid and one 8-bit output value at the top right, and handles the 
programming logic for configuring as many cells as possible at once from the microprocessor that 
lives alongside the LB, and will be detailed later. 
 
Figure 4 shows the effective connections of the entire logic block. Each NEWS pair is connected 
to its immediate neighbor, the 16 cells in the leftmost column have their west input connected to a 
bit in two 8-bit inputs from the microcontroller, the upper 8 cells in the rightmost column have 
their east outputs connected to a bit in an 8-bit output value to be read in by the microcontroller, 
all cells in each column are connected to a common PROG_CS line for column select during 
programming, and all cells in each row are connected to a PROG_DAT line for programming data. 
Each cell is then also connected to one single PROG_CLK line for the entire array. 
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This means that in practice, one configures the entire logic block by programming one column at 
a time. The 16 individual PROG_DAT lines send 16 bits of data to one cell in the column whose 
column select pin is currently high. All cells in the block receive the clock signal concurrently, but 
only those whose column select line is high act upon the clock and data being sent. 
 
One interesting note is that due to the fixed placement of the global input and output bytes for the 
array, the evolutionary solutions must also account for these fixed IO positions. This is similar to 
what would be seen in a real-world implementation of an evolvable circuit where the algorithm 
must properly account for fixed hardware limitations. 
 
 
 

Figure 4 - Logic Block Functional Diagram 
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2.3 SIMULATED MICROCONTROLLER CONFIGURATION 
 
The final portion of the FPGA hardware is a microcontroller to interface with the PC-side over 
UART, send this data to the programming interface, and parse and return data from the LB to the 
PC. In order to have the entire FPGA system run on one piece of hardware, the choice of a 
simulated microprocessor, or “softcore” was the only real option available. 
 
Many different softcore architectures exist, everything from Intel 8051-based, to high end ARM 
processors, to custom FPGA manufacturer designs. The requirements for this project meant that 
whatever processor was used had to be able to drive 56 outputs, and read 8 inputs, along with have 
an integrated UART peripheral, timer support for generating accurate clocks, and if possible, 
interrupts. 
 
8051 designs lack these high-level features, and ARM cores are more difficult to implement and 
have higher overhead on the software development side. This left the option of Xilinx’s custom 
Microblaze architecture – which implements all of the features listed above, with some room to 
grow. 
 
 

3. PC SOFTWARE 
 
Unfortunately, the project was not able to progress past the work completed in Section 2.3 due to 
timeline constraints. What follows in this section details the planned architecture for the 
evolutionary algorithms and the desktop software that would interface with the FPGA hardware. 
 

3.1 EVOLUTIONARY ALGORITHMS 
 
There are three primary evolution strategies used in evolvable hardware implementations [2]: 
canonic genetic algorithms (elitist evolution), μ+λ evolution, and Cartesian genetic programming.  
 
As noted in Section 1 most early implementations used elitist evolution, as in the Thompson study. 
These elitist strategies copied over one or more of the fittest individuals from the population at 
each evolutionary step, and then used them as parents for the entirety of the next generation of 
individuals [1]. This eliminates crucial genetic diversity in a population, making the evolutionary 
process much more dependent on random mutation than if all individuals have a chance of 
producing offspring. 
 
μ+λ evolution takes some steps to counter this. It copies over the most fit individuals, uses them 
as parents to generate a new subset of individuals, and also copies over portions of the previous 
population. This maintains genetic diversity, and helps prevent optimizing out needed genetic 
material from an otherwise nonoptimal solution. 
 
Cartesian genetic programming (CGP) represents a significant departure from these elitist-style 
algorithms, and is instead based heavily in graph theory. By representing complex graph 
relationships as a string of integers, the function of nodes in a graph, connections between nodes, 
and all other graph parameters can be modified from an easily-evolvable string that represents the 
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genotype of the individual solution [3]. An astute reader will note that the logic block detailed in 
Section 2.2 can be easily represented as a graph, and the 16-bit programming string at each cell – 
which handles signal routing between cells, cell function, and cell configuration – could be 
concatenated to form a genotype for the entire logic block, fitting into the CGP model perfectly. 
 
 

3.2 PROPOSED EVOLUTION IMPLEMENTATION 
 
The proposed implementation is a slightly modified CGP algorithm. The logic block and its 
configuration bits will be represented as a graph in the desktop software. The desktop software 
will perform the evolution computations for each generation, and then generate a configuration 
bitstream that is 4096 bits long. This will be sent over the UART to the softcore, which will 
coordinate programming the cells with these values. 
 
Once cells are programmed, the softcore will put known 8-bit values at the input of the circuit, and 
record the output. All three of these values will then be sent over the UART back to the desktop 
implementation, which will perform a fitness calculation that was not determined, and then record 
this fitness value for each individual in the generated population. 
 
The genotype of the logic block is made up of 16*16*16 bits, or 16 bits of memory for each of the 
256 cells. During recombination for two parents, each of the 256 cells can be seen as one “gene,” 
with its 16 bits of configuration information being divided up into its respective functions 
controlling the internal multiplexers. The internal multiplexers represent the lowest level of 
granularity at the recombination level – that is, when two parent individuals produce an offspring, 
for each internal configuration mux there will be a 50/50 chance that the offspring’s configuration 
mux values come from either parent. There will be no implementation of dominant or recessive 
alleles. Following recombination to produce a new offspring, each individual be subject to a 
chance of random mutation at each bit in the configuration string, helping foster genetic diversity. 
 
Parent selection will be probabilistic based on fitness scores. To avoid eliminating potentially-
important genetic information contained in an otherwise non-optimal individual, all individuals 
will have a chance of producing offspring. After fitness calculation for each individual, their fitness 
scores will be normalized to create a percent-chance of producing offspring. All individuals will 
then be added to a “mating pool” where for n offspring desired in the resulting population, 2*n 
parents will be selected from the mating pool at random, based off of their reproduction chances. 
 
The desktop side software will be implemented in Processing, which is a Java based language built 
around graphical visualization and data processing. It also features easy-to-implement 
UART/Serial port access, critical for programming the FPGA board. The software will consist of 
the graph visualizer for the logic block, the evolutionary computation logic, and the programming 
logic. 
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4. CONCLUSIONS 
 
This paper has detailed a modern implementation of an evolvable hardware circuit on a new Xilinx 
Artix-7 FPGA development board. It has also detailed a planned implementation of an 
evolutionary algorithm and the software to control the hardware implemented onboard. 
 
Despite hardware implementation progressing as planned, the project hit a stopping point before 
the desktop software could be written. As such, it was not able to come to completion or produce 
any valid results as far as evolutionary circuits are concerned. 
 
The project, however, accomplish its primary goal at the onset. A successful design and 
implementation of the circuits for the reprogrammable logic was created and tested on modern 
FPGA hardware that did not natively support many of the features the early designs were built on. 
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